

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### Removal of Crystal Violet Dye from Aqueous Solution Using Calcined and Uncalcined Mixed Clay Adsorbents

P. Monash<sup>a</sup>; G. Pugazhenthi<sup>a</sup>

<sup>a</sup> Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India

Online publication date: 07 January 2010

**To cite this Article** Monash, P. and Pugazhenthi, G.(2010) 'Removal of Crystal Violet Dye from Aqueous Solution Using Calcined and Uncalcined Mixed Clay Adsorbents', *Separation Science and Technology*, 45: 1, 94 – 104

**To link to this Article:** DOI: 10.1080/01496390903256174

URL: <http://dx.doi.org/10.1080/01496390903256174>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# Removal of Crystal Violet Dye from Aqueous Solution Using Calcined and Uncalcined Mixed Clay Adsorbents

P. Monash and G. Pugazhenthi

Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India

In this work, calcined and uncalcined mixed clays containing kaolin, ball clay, feldspar, pyrophyllite, and quartz are examined as a potential adsorbent for the removal of crystal violet dye from aqueous solution. These clays are characterized by nitrogen adsorption/desorption isotherms, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and thermo gravimetric analysis (TGA). The kinetics and thermodynamic parameters as well as the effects of the pH, the temperature, and the adsorbent dosage have also been investigated. The experimental results indicate that the Langmuir model expresses the adsorption isotherm better than the Freundlich model. The obtained result showed a tremendous increase in the crystal violet adsorption capacity ( $1.9 \times 10^{-3} \text{ mol g}^{-1}$ ) after calcination, which is one order greater than that of the uncalcined mixed clay. The mechanism of the adsorption process is elucidated on the basis of experimental data. The percentage removal of crystal violet dye increases with increasing the pH, the temperature, and the adsorbent dosage. The investigation of kinetic studies indicates that the adsorption of crystal violet on calcined and uncalcined mixed clays could be described by the pseudo-second-order model. The negative  $\Delta G^\circ$  values obtained from the thermodynamic investigation confirm that the adsorption is spontaneous in nature. The adsorption results suggest that the calcined and uncalcined mixed clays can also be used as low cost alternatives to the expensive activated carbon for the removal of dyes from aqueous solution.

**Keywords** adsorption; calcined; clay; crystal violet; isotherm; thermodynamic

## INTRODUCTION

The carcinogenic and the toxic nature of the dye stuff effluent discharged from industries such as textile, paper, carpet, printing, leather industries, etc., creates harmful effects on aquatic life and human beings (1). It also causes death to the soil microorganism that affects the agricultural productivity (2). Because of the aforesaid reasons, the treatment of the dye stuff effluents is an important concern which creates lots of environmental issues. The treatment of dyes is broadly classified into three categories, namely,

Received 27 February 2009; accepted 16 July 2009.

Address correspondence to G. Pugazhenthi, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Fax: +91 361 2582291. E-mail: pugal@iitg.ac.in

biological, chemical, and physical treatment. Although all the treatment methods have their own merits and demerits, adsorption is most widely adopted for the treatment of dyes because of its effectiveness and versatility (3,4). Many adsorbents have been tested to reduce dye concentrations from aqueous solutions (4,5). Among the various adsorbents, activated carbon is the most widely used adsorbent for industrial applications because of its high adsorption capacity (6). Unfortunately, it is too expensive and difficult to regenerate. So the researchers are being focused to search for alternative low cost and abundantly available adsorbents having high adsorption capacity. Many low-cost adsorbents, including natural materials, clays, biosorbents, etc., were utilized for the removal of the dyes (4–12). Among these adsorbents, clays have found to be a more interesting adsorbent for adsorption studies due to its low cost, higher surface charges, and good lamellar structure, which makes it a potential adsorbent for the treatment of heavy metals, dyes, and organic compounds from water and wastewater. Generally, clays are aggregates of hydrous siliceous particles containing a variety of phyllosilicate minerals rich in silicon and aluminum in the form of oxides and hydroxides, which includes variable amounts of structural water. The interlayer pore opening of the clays depends on the nature, size, and shape of intercalated species. Depending on their origin and treatment methods, clays behave differently and follow different adsorption mechanism leads to different adsorption capacity of the dye molecules (11–13).

Smectite and kaolinite group of clays were most widely used for the adsorption of dyes and heavy metals. Smectite clay has a 2:1 expanding crystal lattice made up of two tetrahedral sheets with a central Al octahedral sheet. Montmorillonite, bentonite, beidellite, nontronite (dioctahedral) and hectorite, saponite, and sauconite (trioctahedral) belong to the smectite group. Kaolinite clay is also called as kaolin, which is a 1:1 aluminosilicate formed by a layer of silica ring joined to a layer of alumina octahedra through shared oxygen. Kaolinite, dickite, nacrite, halloysite (dioctahedral) and antigorite, chamosite, chrysotile, cronstedite (trioctahedral) are layers of the kaolinite group.

The different minerals are polymorphs i.e., the minerals have the same chemistry but different structures play a vital role in adsorption. In general, most of the clays have permanent negative charges, which is due to the isomorphous substitution of  $\text{Al}^{3+}$  for  $\text{Si}^{4+}$  in the tetrahedral layer and  $\text{Mg}^{2+}$  for  $\text{Al}^{3+}$  in the octahedral layer (14). Clays are widely used for the adsorption of cationic dyes without any surface modification due to its permanent negative charges. However, for the adsorption of anionic dyes, surface modification is required to achieve a good adsorption capacity and the recent research works suggested that modified clay minerals are innovative and promising adsorbent material for anionic dye treatment (1,6,8,10,11,13,15–17). Akbal (18) has investigated the adsorption of methylene blue (MB) and crystal violet (CV) on pumice powder having two different compositions. The pumice-II powder containing  $\text{SiO}_2:\text{Al}_2\text{O}_3$  ratio of 3.87 showed a higher adsorption capacity than pumice-I ( $\text{SiO}_2:\text{Al}_2\text{O}_3$  ratio = 4.81). In addition, both the pumice powders have also shown the higher adsorption capacity for methylene blue than crystal violet. Eren and Afsin (19,20) have investigated CV adsorption on raw, base-activated, and Al-saturated sepiolite clay as well as on raw, Ni-saturated (Ni-), Co-saturated (Co-), and Zn-saturated (Zn-) bentonite surfaces. They concluded that an increase/decrease in the adsorption capacity of cation-saturated/base activated sepiolite or bentonite was attributed to an increase/decrease in the permanent charges at the basal surface. Rytwo et al. (21) studied the interactions between monavalent organic cationic dyes on montmorillonite and a model was simulated considering the electrostatic and specific binding concept.

Several authors have also reported the adsorption of dyes on different clays such as kaolin (8), palygorskite (9), attapulgite (10), hectorite (11), pyrophyllite (17), pumice (18), sepiolite (19), bentonite (20), montmorillonite (21) etc. Only few works have been reported for the removal of dyes on raw and calcined adsorbents (22–24). The reactions/phase transformations during calcination may change the surface charges and also creates different voids within the given plane that may enhance the adsorption capacity of dye on the clay surface. Only few explanations were available regarding the mechanisms for the adsorption of dyes on clay. It seems to be necessary to study the adsorption mechanism of dyes on the external and interlamellar surfaces of the clays for complete understanding. A critical review of the literatures conveys that the adsorption of dyes on mixed clay containing aluminosilicates has not yet been tried.

The purpose of the present study is to investigate the possibility of using mixed clay containing kaolin, ball clay, feldspar, pyrophyllite, and quartz for the removal of crystal violet dye by batch adsorption method. The fact of using the aforesaid clays is that, it is inexpensive and most widely

used for pottery works (it may be used for this purpose after adsorption). The raw (uncalcined) clay is calcined at 900°C to study the effect of calcination on adsorption of crystal violet dye. The characteristics of both calcined and uncalcined mixed clays are analyzed. In addition to adsorption equilibrium studies, thermodynamic and kinetic investigations are also made for the adsorption of crystal violet dye on both the adsorbents. The effect of temperature, the pH, and the adsorbent dosage on adsorption capacity is also examined. Moreover, an attempt has been made to explain the adsorption mechanism of dye on clay in terms of interbasal spacing and its functional groups.

## MATERIALS AND METHODS

Crystal violet dye (C.I. 42555, chemical formula =  $\text{C}_{25}\text{H}_{30}\text{N}_3\text{Cl}$ , Mol. wt. = 407.99) was purchased from Loba Chemie (Mumbai, India). Sodium hydroxide (NaOH) and hydrochloric acid (HCl) were procured from Merck (I) Ltd (Mumbai, India). All the chemicals were used as received. Water used in the preparation of dye solution was obtained from the Millipore System.

### Preparation of Mixed Clay Adsorbent

The low cost clays used in the present work were collected locally. All the clays (kaolin, ball clay, feldspar, pyrophyllite, and quartz) were mixed in a ball mill for 40 min at 40 rpm and sieved through a 200-mesh standard sieve. The molar composition of the raw mixed clay was in the ratio of 19.70  $\text{Al}_2\text{O}_3$ : 42.67  $\text{SiO}_2$ : 0.027  $\text{Na}_2\text{O}$ : 4.32  $\text{H}_2\text{O}$ : 1.0  $\text{CaO}$  (calculated using formula weights). The mixed clays of a given composition were stirred with Millipore water in a Borosil beaker for 3 hours and then the mixture was kept undisturbed for 30 to 60 min and the suspended impurities were removed. The above process was repeated several times by adding Millipore water to get rid off the impurities from the mixed clay. Finally, the mixed clay was dried in a hot air oven at 120°C to remove the moisture. The raw mixed clay was obtained by drying a part (half of the total amount) of the above mixed clay at 150°C and stored in an air tight bottle. The second half of the above mixed clay was calcined at 900°C for 6 h to get the calcined mixed clay. The heating and the cooling rate of the calcination process was controlled at 2°C  $\text{min}^{-1}$  using a programmable muffle furnace. Both the calcined and uncalcined mixed clay was tested for the adsorption of crystal violet dye.

### Characterization of Adsorbent

Thermo gravimetric analysis (TGA) was performed on the Mettler Toledo thermo gravimetric analyzer (TGA/SDTA 851® model) under air atmosphere from 25°C to 900°C with a heating rate of 10°C  $\text{min}^{-1}$ . The X-ray diffraction (XRD) patterns of the mixed clays were recorded using Bruker AXS instrument equipped with Cu

$K\alpha$  ( $\lambda = 1.5406 \text{ \AA}$ ) radiation operating at 40 kV and 40 mA between  $2\theta$  in the range of 5 and  $90^\circ$  with a scan speed of  $0.05^\circ \text{ s}^{-1}$ . Nitrogen adsorption/desorption isotherms of the mixed clays were measured at  $-196^\circ\text{C}$  by Beckmen-Coulter surface area analyzer (SA<sup>TM</sup> 3100 model). Both the clay samples were degassed at  $200^\circ\text{C}$  for 2 h, prior to the  $\text{N}_2$  adsorption/desorption analysis. The surface area was calculated using a multipoint Brunauer-Emmett-Teller (BET) model. The pore size distribution was obtained through the BJH model using the desorption isotherms and the total pore volume was estimated at a relative pressure of 0.99. FT-IR spectra were recorded between 4000 and  $450 \text{ cm}^{-1}$  region using Perkin-Elmer spectrometer (spectrum one model).

## EXPERIMENTAL

### Adsorption Isotherm Experiment

Calcined and uncalcined clays were used as an adsorbent for the adsorption of crystal violet dye. Batch equilibrium technique was followed for the adsorption isotherm studies. First, the dye was dried at  $100^\circ\text{C}$  for 2 h to remove the moisture. A stock solution of concentration,  $2.45 \times 10^{-3} \text{ M}$  was prepared and the experimental solutions of the desired concentration were obtained by successive dilutions of the stock solution. For adsorption isotherm experiments, 50 ml of dye solution of known initial concentrations (in the range of  $1.23 \times 10^{-4}$  to  $2.21 \times 10^{-3} \text{ mol dm}^{-3}$  for calcined mixed clay and  $2.45 \times 10^{-5}$  to  $9.80 \times 10^{-4} \text{ mol dm}^{-3}$  for uncalcined mixed clay) were shaken with 0.05 g of adsorbent (calcined or uncalcined mixed clay) in an incubator shaker (Labtech<sup>®</sup>, Korea) at 150 rpm and at natural pH of the dye solution. The solution and solid phase were separated by centrifugation at 8000 rpm for 30 min in a high speed refrigerated table top centrifuge (Sigma Laborzentri-fugen GmbH, Model 4k15C). About 10 ml of the supernatant was collected without disturbing the centrifuged solution and analyzed spectrophotometrically (Perkin Elmer, Model Lamda 35) by measuring the maximum absorbance at the wavelength,  $\lambda_{\text{max}}$ , of 582 nm. In order to determine the thermodynamic parameters and to study the influence of temperature, the experiments were carried out at three different temperatures (30, 40, and  $50^\circ\text{C}$ ). The amount of CV dye adsorbed at equilibrium was calculated by the following equation,

$$q_e = \frac{V \times (C_0 - C_e)}{m} \quad (1)$$

where,  $q_e$  is the amount of dye adsorbed at equilibrium ( $\text{mol g}^{-1}$ ),  $V$  is the volume of the solution ( $\text{dm}^3$ ),  $m$  is the mass of the adsorbent (g),  $C_0$  and  $C_e$  are the initial and equilibrium concentrations of the dye, respectively, which is computed from the calibration curve.

### Adsorption Kinetics Experiment

Kinetic adsorption experiments were conducted to find the effect of contact time of the adsorption process and to identify the adsorption rate. The kinetics of CV dye adsorption on calcined and uncalcined mixed clays were investigated at a fixed initial dye concentration ( $2.45 \times 10^{-4} \text{ M}$ ) by adding 0.05 g of adsorbent into 50 ml of dye solution at pH of 4.20 (natural pH of CV solution). The mixture was shaken as a function of time in an incubator shaker at 150 rpm for three different temperatures (30, 40, and  $50^\circ\text{C}$ ). At pre-determined time intervals, samples were taken and the concentration was measured. The amount of CV adsorbed  $q_t$  at time  $t$  was determined by the following equation,

$$q_t = \frac{V \times (C_0 - C_t)}{m} \quad (2)$$

where,  $q_t$  is the amount of dye adsorbed at time  $t$  ( $\text{mol g}^{-1}$ ),  $V$  is the volume of the solution ( $\text{dm}^3$ ),  $m$  is the mass of the adsorbent (g),  $C_0$  and  $C_t$  are the concentrations of the dye at initial ( $t = 0$ ) and at time  $t$ , respectively.

The effect of the adsorbent dosage on CV dye removal was studied by taking 0.01 to 0.2 g of calcined mixed clay and 0.02 to 0.8 g of uncalcined mixed clay for a fixed initial dye concentration of  $2.45 \times 10^{-4} \text{ M}$  at  $30^\circ\text{C}$  (pH = 4.20). The influence of pH on dye removal was also carried out by performing the adsorption experiments by varying the dye solution pH from 2–10 for three different temperatures (30, 40, and  $50^\circ\text{C}$ ) and the initial concentration of the dye solution was  $2.45 \times 10^{-4} \text{ M}$ . The pH of the dye solution was adjusted by adding a few drops of NaOH or HCl to reach the desirable value, before shaking. All the adsorption experiments were always carried out in duplicate and the mean values were taken.

## RESULTS AND DISCUSSIONS

### Adsorbent Characterization

The TGA analysis of the clays used in the present work is shown in Fig. 1. The weight loss of kaolin, pyrophyllite, ball clay, and feldspar at  $900^\circ\text{C}$  is found to be 5, 5, 15, and 46%, respectively. However, quartz shows no weight loss during calcination. Generally the loss in weight is due to dehydration ( $100\text{--}220^\circ\text{C}$ ), dehydroxylation/decarbonation ( $220\text{--}600^\circ\text{C}$ ), and decomposition/phase transformation ( $600\text{--}900^\circ\text{C}$ ) (25). The loss of hydration water from pyrophyllite occurs below  $200^\circ\text{C}$ , while the weight loss due to dehydroxylation of the pyrophyllite begins about  $500^\circ\text{C}$  and the reaction is over at  $825^\circ\text{C}$ . The 5% weight loss of pyrophyllite is due to the release of structural OH (26). Commonly, kaolin-feldspar-quartz undergoes dehydroxylation at around  $550^\circ\text{C}$  and forms metakaolin ( $\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$ ). Metakaolin decomposes to mullite at high

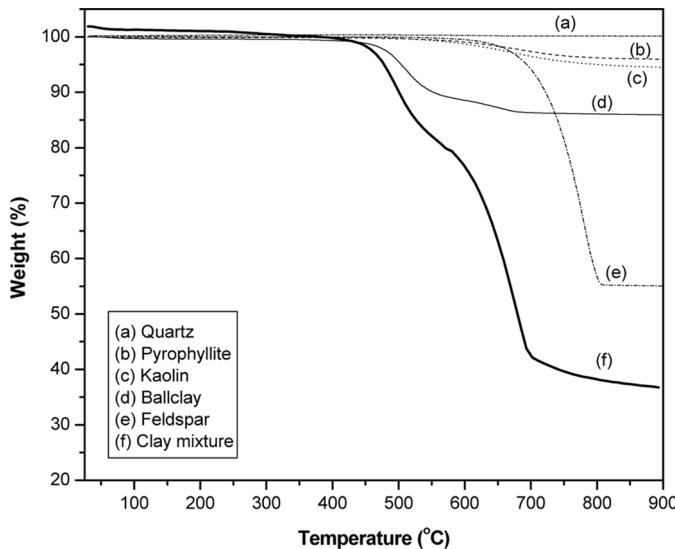



FIG. 1. Thermogravimetric curves of clays.

temperature ( $>850^{\circ}\text{C}$ ). The total weight loss of the mixed clay is found to be 64% during calcination between 25 and  $900^{\circ}\text{C}$ , which is mainly due to the reaction/phase transformation of the clays. During calcination, the destruction of layer arrangement occurs due to dehydration/dehydroxylation and also reorganization causes the opening of layers and generation of spaces (27). As the temperature increases, grains begin to melt and the liquid produced fills the space between the particles. This action decreases the pore volume of the calcined mixed clay. Calcination decreases the amount of hydroxyl groups which may affect the adsorption of dyes (28). In addition, the created hydrophobicity during calcination also makes the surface chemistry more compatible for organic systems.

Figure 2 depicts the XRD pattern of the calcined and uncalcined mixed clays. Generally, thermal transformation of clays undergoes a rearrangement of the existing structures that commonly occurs in preference to the complete disintegration followed by crystallization of a new phase. A series of reactions and phase transformations leads to

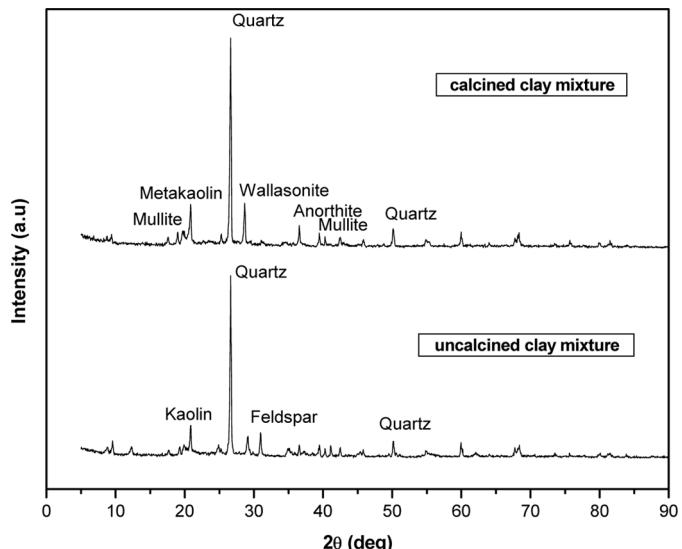



FIG. 2. XRD patterns of calcined and uncalcined mixed clay.

the formation of new phases and disappearance of the others, which makes a shift in the peak position. After calcination, the major crystalline phase is found to be quartz and the various phases formed are also represented in Fig. 2. The intensity of all the reflections are decreased for the calcined mixed clay and the disappearance of all the reflections of kaolin peak indicate that the kaolin structure is entirely broken. The planes affected by defects due to dehydration increases the interlayer distances of the basal planes (29). The textural properties of the mixed clay (both calcined and uncalcined) are presented in Table 1. The crystallite size is calculated using Scherer's formula and found to be decreased during calcination.

$$d_{\text{XRD}} = \frac{K\lambda}{\beta \cdot \cos \theta} \quad (3)$$

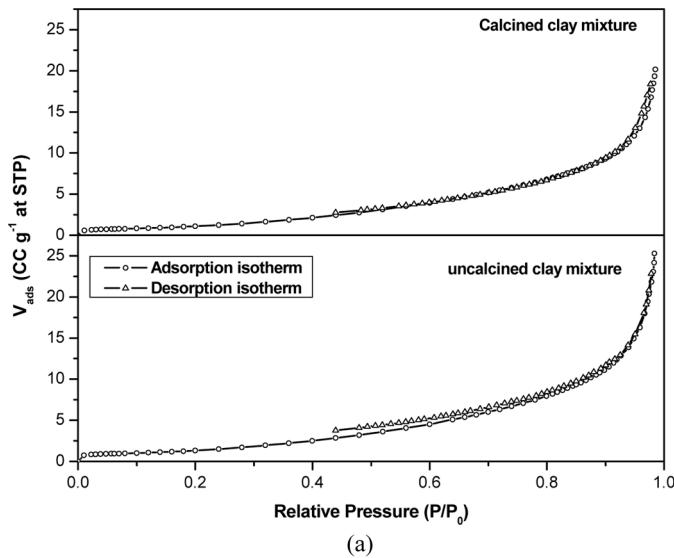
where,  $d_{\text{XRD}}$  is the crystallite size (nm),  $K$  is the shape constant (0.9),  $\lambda$  is the wave length (1.5406 Å) of  $\text{CuK}\alpha$

TABLE 1  
Textural properties of mixed clays

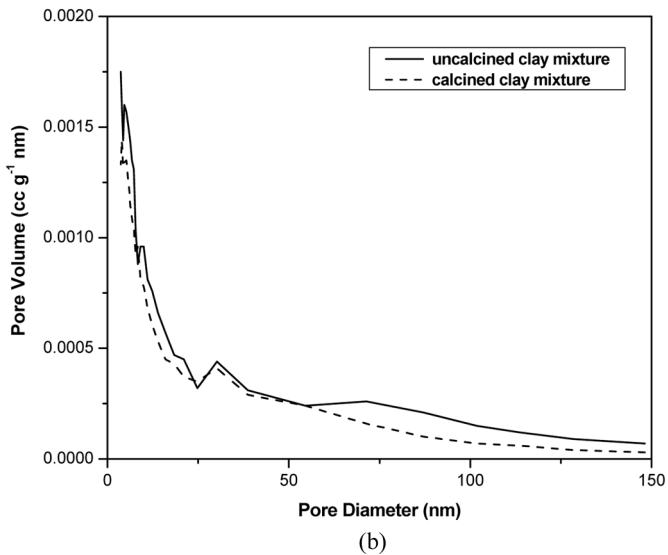
| Sample                  | X-ray diffraction                     |                                    | $\text{N}_2$ adsorption                         |                                         |                                         |
|-------------------------|---------------------------------------|------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------|
|                         | Unit cell parameter <sup>a</sup> (nm) | Crystallite size <sup>b</sup> (nm) | $S_{\text{BET}}$ ( $\text{m}^2 \text{g}^{-1}$ ) | $V_{\text{mes}}$ ( $\text{ml g}^{-1}$ ) | Average pore diameter <sup>c</sup> (nm) |
| Calcined clay mixture   | 3.866                                 | 40.17                              | 3.966                                           | 0.0283                                  | 28.54                                   |
| Uncalcined clay mixture | 3.866                                 | 41.51                              | 4.771                                           | 0.0357                                  | 29.93                                   |

<sup>a</sup>Unit cell parameter  $a_0 = 2d_{100}/\sqrt{3}$ . Where  $d_{100}$  is the d-spacing of (100) reflection.

<sup>b</sup>Crystallite size  $d_{\text{XRD}} = \frac{K\lambda}{\beta \cdot \cos \theta}$ .  $\beta$  is the full width at half maximum and  $\lambda$  is the wave length.

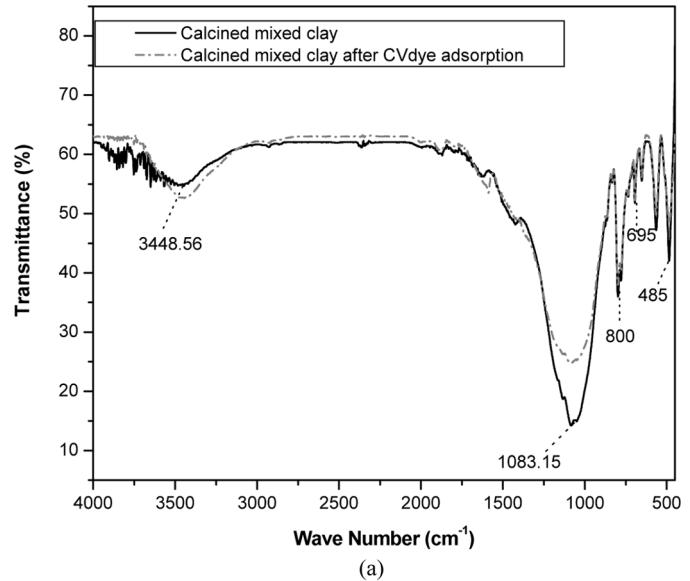

<sup>c</sup>Average pore diameter  $D_p = 4V_{\text{mes}}/S_{\text{BET}}$ . Where  $V_{\text{mes}}$  is the Mesopore volume and  $S_{\text{BET}}$  is the BET surface area.

radiation,  $\beta$  is the full width at half maximum, and  $\theta$  is the diffraction angle (degrees).

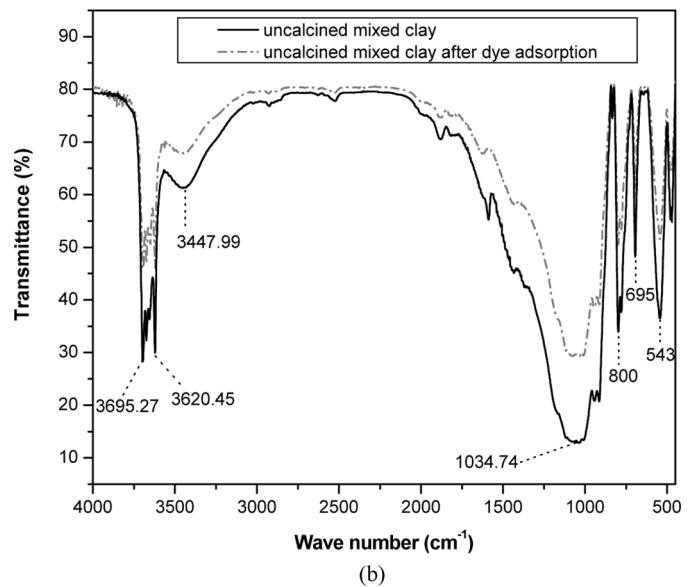

The nitrogen adsorption/desorption isotherms and pore size distribution of the calcined and uncalcined mixed clays are shown in Figs. 3a and 3b. The uncalcined mixed clay shows a nonporous Type-II isotherm and also shows a hysteresis loop arising from the presence of mesopores. As can be seen from the Table 1, the BET surface area of the calcined mixed clay is found to be  $3.966 \text{ m}^2 \text{ g}^{-1}$  ( $4.771 \text{ m}^2 \text{ g}^{-1}$  for uncalcined mixed clay) with pore volume of  $0.0283 \text{ ml g}^{-1}$  ( $0.0357 \text{ ml g}^{-1}$  for uncalcined mixed clay). The surface area and pore volume of the mixed clays are decreased during calcination, which may be due to the formation of the agglomerate structures by partial

fusion of particles producing higher amount of coarse fractions (30).

FTIR spectrum of the calcined and uncalcined mixed clays is shown in Figs. 4a and 4b. The bands at  $3620$  and  $3695 \text{ cm}^{-1}$  corresponds to the adsorbed water and the band at  $3447 \text{ cm}^{-1}$  correspond to the O-H stretching of the silica group present in the mixed clay. The OH bending band appears at  $985 \text{ cm}^{-1}$  for the uncalcined mixed clay. The asymmetric stretching vibration of Si—O—Si of the  $\text{SiO}_4$  tetrahedron is observed at  $695$ ,  $800$ , and  $1035 \text{ cm}^{-1}$  (due to the presence of quartz) (26). The absorption peaks around  $460$  to  $700 \text{ cm}^{-1}$  are mainly due to bending




(a)




(b)

FIG. 3. (a)  $\text{N}_2$  adsorption/desorption and (b) pore size distribution of calcined and uncalcined mixed clays.



(a)



(b)

FIG. 4. FTIR Spectra of (a) calcined and (b) uncalcined mixed clays before and after dye adsorption.

vibration of Si—O—Si bonds and the band at  $467\text{ cm}^{-1}$  corresponds to Si—O bond. During calcination, the bands corresponds to hydroxyl group at  $3695$  and  $3620\text{ cm}^{-1}$  are vanished completely due to the removal of adsorbed water present in the uncalcined mixed clays(22). The removal of adsorbed water and decrease in the intensity of SiO—H stretching band ( $3447\text{ cm}^{-1}$ ) indicates the reduction of surface hydroxyl group, which will have a detrimental effect on adsorption of dyes.

### Adsorption Isotherm

Generally, the adsorption isotherms with a specific adsorbate are carried out to estimate the adsorption characteristics. A concentration variation method is used to calculate the adsorption characteristic of the adsorbent and the process. Equilibrium isotherms are very important in the design of any adsorption processes. The adsorption equilibrium studies of CV on calcined and uncalcined mixed clays were carried out at  $30$ ,  $40$ , and  $50^\circ\text{C}$  and fitted with the Langmuir and Freundlich isotherm models. The models are fitted in nonlinear form without linearization as we know that the linearization leads to an error value of correlation coefficients ( $R^2$ ) depending on in which form it is linearized. So it is difficult to predict the actual isotherm. Nonlinear method is the best way to get the actual isotherm parameters (31). The homogeneous Langmuir adsorption isotherm (32) is represented by the following equation,

$$q_e = \frac{Q_{\max} K_L C_e}{(1 + K_L C_e)} \quad (4)$$

where,  $q_e$  is the adsorbed amount of the dye at equilibrium ( $\text{mol g}^{-1}$ ),  $C_e$  is the equilibrium concentration of the dye in solution ( $\text{mol dm}^{-3}$ ),  $Q_{\max}$  is the maximum adsorption capacity ( $\text{mol g}^{-1}$ ), and  $K_L$  is the constant related to the free energy of adsorption ( $\text{dm}^3 \text{mol}^{-1}$ ).

The heterogeneous Freundlich adsorption isotherm (33) is represented by the following equation,

$$q_e = K_F C_e^{1/n} \quad (5)$$

where,  $K_F$  is the Freundlich isotherm constant ( $\text{mol g}^{-1} (\text{dm}^3 \text{mol}^{-1})^{1/n}$ ) and  $1/n$  is the adsorption intensity (dimensionless).

Figure 5 shows the Langmuir and Freundlich isotherm models fitted with the obtained experimental data and the model parameters are listed in Table 2. The reported adsorption data were obtained by a dye concentration measurement after the adsorbent/adsorbate contact time equal to the equilibrium times. It is observed from Table 2 that the uptake of CV by both the mixed clays (calcined and uncalcined) increases with an increase in the temperature indicates higher interaction energies between CV dye and

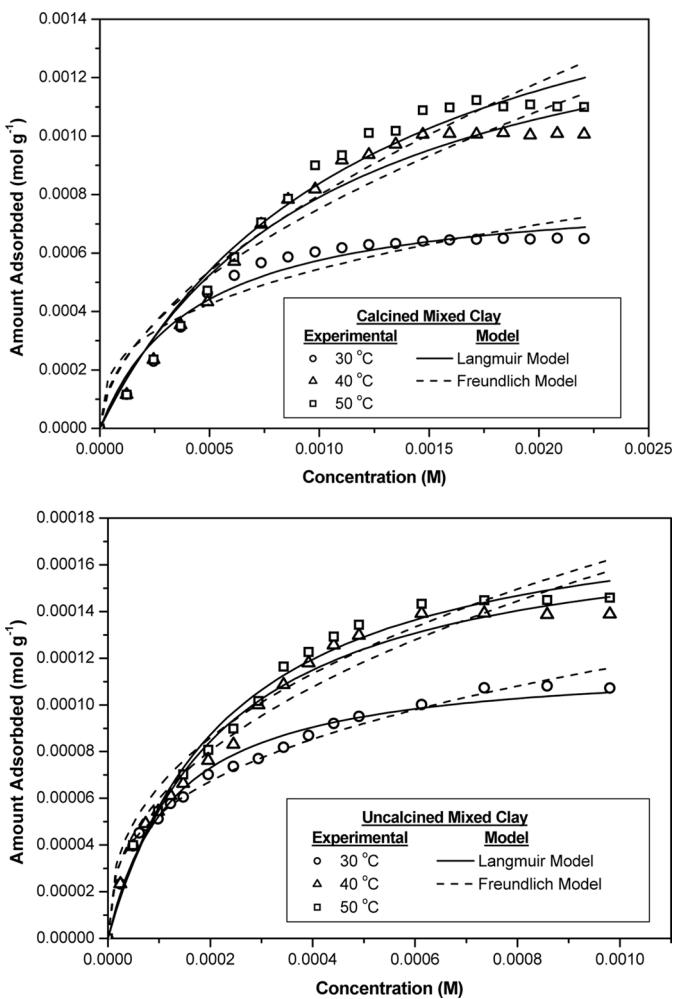



FIG. 5. Adsorption isotherm models of CV on calcined and uncalcined mixed clays at different temperatures.

adsorbents. Similar results have been reported for the adsorption of reactive red MF-3B onto organo-clay (10) and reactive dye onto chemically cross-linked chitosan blends (34). The maximum adsorption capacity of the calcined and uncalcined mixed clay is found to be  $1.9 \times 10^{-3}$  and  $1.9 \times 10^{-4} \text{ mol g}^{-1}$ , respectively at  $50^\circ\text{C}$ . The high adsorption capacity of the calcined mixed clay over the uncalcined mixed clay may be attributed to the different mechanism (explained later in the proposed mechanism section). The correlation coefficients ( $R^2$ ) of both the models are compared and a greater correlation coefficients value is obtained for the Langmuir model at all temperatures indicates that the Langmuir model could better describe the adsorption of CV on both calcined and uncalcined mixed clays. Generally, the hydrophilic sites of the clays are responsible for the adsorption of polar organic molecules and the hydrophobic sites are responsible for the adsorption of nonpolar molecules. Although

TABLE 2  
Parameters of adsorption isotherms of CV on calcined and uncalcined mixed clay at different temperatures

| Adsorbent               | Temperature<br>(°C) | Langmuir isotherm                    |                                               |       | Freundlich isotherm                                                                 |       |       |
|-------------------------|---------------------|--------------------------------------|-----------------------------------------------|-------|-------------------------------------------------------------------------------------|-------|-------|
|                         |                     | $Q_{\max}$<br>(mol g <sup>-1</sup> ) | $K_L$<br>(dm <sup>3</sup> mol <sup>-1</sup> ) | $R^2$ | $K_F$ (mol g <sup>-1</sup> )<br>(dm <sup>3</sup> mol <sup>-1</sup> ) <sup>1/n</sup> | 1/n   | $R^2$ |
| Calcined clay mixture   | 30                  | $8.2 \times 10^{-4}$                 | $2.332 \times 10^3$                           | 0.969 | $6.37 \times 10^{-3}$                                                               | 0.356 | 0.892 |
|                         | 40                  | $1.6 \times 10^{-3}$                 | $0.97 \times 10^3$                            | 0.971 | $2.96 \times 10^{-2}$                                                               | 0.531 | 0.912 |
|                         | 50                  | $1.9 \times 10^{-3}$                 | $0.814 \times 10^3$                           | 0.976 | $4.07 \times 10^{-2}$                                                               | 0.569 | 0.904 |
| Uncalcined clay mixture | 30                  | $1.2 \times 10^{-4}$                 | $7.962 \times 10^3$                           | 0.982 | $1.23 \times 10^{-3}$                                                               | 0.342 | 0.896 |
|                         | 40                  | $1.8 \times 10^{-4}$                 | $4.403 \times 10^3$                           | 0.984 | $2.96 \times 10^{-3}$                                                               | 0.423 | 0.921 |
|                         | 50                  | $1.9 \times 10^{-4}$                 | $4.245 \times 10^3$                           | 0.987 | $2.59 \times 10^{-3}$                                                               | 0.400 | 0.909 |

the surface of the clays are structurally heterogeneous in nature, the active adsorption sites for the polar dye molecules are hydrophilic edge surfaces suggesting that the surface is energetically homogeneous with respect to adsorption energy. The dye molecules may chemically adsorb on the edge of the crystal, which forms a binding with the tetrahedrally and octahedrally coordinated Lewis base sites that are previously hydrated with hydroxyls of the water molecules (17). The maximum adsorption capacity of CV in the present study is compared with other adsorbents reported in the literatures (Table 3). It is very clear that the adsorption capacity of calcined mixed clay is much higher than that of the other potential adsorbents such as polygorskite, sepiolite (raw and modified), kaolinite, bentonite (raw and modified), and charred saw dust. Thus based on the results obtained (Table 3), both the mixed clays (calcined and uncalcined) could be employed

as low cost adsorbents for an alternative to commercial activated carbons and other individual clays for the removal of colors.

### Thermodynamic Parameters

The thermodynamic parameters of CV adsorption on both the calcined and uncalcined mixed clays are determined, since both energy and entropy are the key factors to be considered in any process design. The Gibbs free energy change for the adsorption process is expressed by the following equation,

$$\Delta G^0 = -RT \ln K \quad (6)$$

where,  $\Delta G^0$  is the change in free energy (kJ mol<sup>-1</sup>) and R is the gas constant (8.314 J mol<sup>-1</sup> K<sup>-1</sup>). The change in enthalpy and entropy are related to the Gibbs free energy and are calculated based on the adsorption isotherms by the following equations,

$$\Delta H^0 = -R \left( \frac{T_2 T_1}{T_2 - T_1} \right) \ln \frac{K_1}{K_2} \quad (7)$$

$$\Delta S^0 = \frac{\Delta H^0 - \Delta G^0}{T} \quad (8)$$

where,  $\Delta H^0$  is the change in enthalpy (kJ mol<sup>-1</sup>),  $\Delta S^0$  is the change in entropy (kJ mol<sup>-1</sup> K<sup>-1</sup>), T is the absolute temperature (K),  $K_1$  and  $K_2$  are the Langmuir constants at  $T_1 = 30^\circ\text{C}$  and  $T_2 = 50^\circ\text{C}$ , respectively. The thermodynamic parameters for the adsorption of CV on calcined and uncalcined mixed clay are given in Table 4. The negative values of  $\Delta G^0$  at different temperatures indicate that the adsorption of CV on both the adsorbents are thermodynamically feasible and spontaneous in nature. In general,  $\Delta H^0$  value in the range of  $-5$  to  $-40$  kJ mol<sup>-1</sup> corresponds to physisorption mechanism and in the range of  $-40$  to  $-800$  kJ mol<sup>-1</sup> suggests a chemisorption mechanism (5). However, the dividing line between the physical

TABLE 3

Reported maximum adsorption capacity of CV dyes on various adsorbents

| Adsorbent                                    | Adsorption capacity<br>(mol g <sup>-1</sup> ) | Ref.         |
|----------------------------------------------|-----------------------------------------------|--------------|
| Palygorskite                                 | $1.42 \times 10^{-4}$                         | 9            |
| Raw sepiolite                                | $1.80 \times 10^{-4}$                         | 19           |
| Base activated sepiolite                     | $4.10 \times 10^{-4}$                         | 19           |
| Raw bentonite                                | $3.50 \times 10^{-4}$                         | 20           |
| Co-saturated bentonite                       | $5.6 \times 10^{-4}$                          | 20           |
| Kaolin                                       | $1.16 \times 10^{-4}$                         | 35           |
| CDBA-bentonite                               | $8.80 \times 10^{-4}$                         | 36           |
| CP-bentonite                                 | $1.02 \times 10^{-3}$                         | 36           |
| Activated carbon produced from sewage sludge | $1.67 \times 10^{-4}$                         | 37           |
| Charred saw dust                             | $9.29 \times 10^{-4}$                         | 38           |
| Calcined mixed clay                          | $1.90 \times 10^{-3}$                         | Present work |
| Uncalcined mixed clay                        | $1.90 \times 10^{-4}$                         | Present work |

TABLE 4  
Thermodynamic parameters for the adsorption of CV on calcined and uncalcined mixed clay

| Adsorbent               | $\Delta G^0$ (kJ mol <sup>-1</sup> ) |        |        | $\Delta H^0$ (kJ mol <sup>-1</sup> ) | $\Delta S^0$ (J mol <sup>-1</sup> K <sup>-1</sup> ) |
|-------------------------|--------------------------------------|--------|--------|--------------------------------------|-----------------------------------------------------|
|                         | 30°C                                 | 40°C   | 50°C   |                                      |                                                     |
| Calcined clay mixture   | -19.54                               | -17.90 | -18.00 | -42.82                               | -76.83                                              |
| Uncalcined clay mixture | -22.63                               | -21.84 | -22.43 | -25.59                               | -9.77                                               |

and chemical adsorption is not sharp (5). In this work, the  $\Delta H^0$  values are found to be  $-42.82$  and  $-25.59$  kJ mol<sup>-1</sup> for calcined and uncalcined mixed clays, respectively, which indicates that the adsorption mechanism is physical adsorption for calcined and uncalcined mixed clays. However, the higher negative  $\Delta H^0$  value for calcined mixed clays indicates that the physical interaction between the calcined mixed clay and the dye molecules are very strong than that of uncalcined mixed clay. The negative  $\Delta S^0$  values indicate the decreased randomness at the solid/solution interface (38).

### Proposed Adsorption Mechanism

In general, the exchangeable cations tend to diffuse into the bulk water when clays are mixed with water. As this diffusion process proceeds it creates repulsion forces between the clay platelets that leads to the dispersion of the clay in water. The degree of dispersion depends on the nature of the clay, interlayer cation, and surface charges. The dispersions of clay minerals contain layered particles or their crystallites composed of many layers (14). The individual layers of clay contain a negative surface charge owing to the presence of variable and permanent charges. The variable charge occurs at the layer edges of clay, dominantly at hydroxyl groups, and exhibits acid/base properties. These permanent charges of clays are due to the presence of the central atoms within the octahedral and/or tetrahedral sheets (39).

Cationic dyes always have strong affinity for the clay surfaces, as a result of electrostatic attractions as well as other effects such as the very high hydrophobicity of these molecules (14). So the adsorption capacity is high in both calcined ( $1.9 \times 10^{-3}$  mol g<sup>-1</sup>) and uncalcined ( $1.9 \times 10^{-4}$  mol g<sup>-1</sup>) mixed clays, in spite of the low surface area and pore volume. However, uncalcined mixed clay is nonexpandable in water, which restricts its dispersion in water and the intercalation of organic molecules in the interlamellar spaces. This incomplete dispersion leads to the formation of microaggregates called tactoids. So the interaction of dyes takes place at the tactoid edges as well as on the O-atom sheet at the interlamellar space. However, dyes with nonplanar structures like CV will find more difficulty to enter into this region due to shorter interbasal distances between the layers (14). Due to this reason the

adsorption capacity of uncalcined mixed clays are lower than the calcined mixed clays. After dye adsorption, there is a shift in the FT-IR band position (see Fig. 4b). The decrease in the intensity of siloxane band ( $-\text{Si}-\text{O}-\text{Si}-$ ) at  $1035\text{ cm}^{-1}$ , silanol band ( $\text{SiO}-\text{H}$ ) at  $3447\text{ cm}^{-1}$  and the hydroxyl bands due to adsorbed water at  $3620$  and  $3695\text{ cm}^{-1}$  is observed for uncalcined mixed clays indicates that the sites are occupied by the dye molecules.

In calcined mixed clays, the disappearance of the OH groups, which is originally found in uncalcined mixed clays, will reduce the adsorption capacity of the calcined clays due to reduction in the active sites. It is clear from Table 1 that the surface area and pore volume are decreased for calcined mixed clays. However, a drastic increase in the obtained adsorption capacity (Table 2) could not be properly explained using surface area and pore volume concept. So, the adsorption of CV dye on calcined mixed clay follows a different mechanism. During calcination, the dehydration takes place which creates defects in the planes leads to increase the interbasal spacing (29). When the calcined clay is mixed with water, it expands and forms platelets due to the increase in the interbasal distance between layers. The expansion of these layers may leads to the bilayer coverage of the dyes i.e., two layers of CV cations lying flat in the interlayer space (39,40). The adsorbed dyes on the outer surface migrate towards the inner interlamellar regions could cause an increase in the adsorption of the dye molecules. It seems from the Fig. 4a, that the intensity of the band ( $3442\text{ cm}^{-1}$ ) corresponds to the surface hydroxyl group is increased after dye adsorption. Generally, the surface hydroxyl group would decrease after dye adsorption, however an increase in the hydroxyl group after dye adsorption is observed for calcined mixed clays due to the water molecules entering into the interlayer creating more hydroxyl groups that can be utilized by the dye molecules during adsorption. So the increase in the basal spacing and the formation of a multilayer during calcination plays a vital role and causes drastic increase in the adsorption capacity of the CV dye molecule on calcined mixed clays (29).

### Effect of Adsorbent Dosage

The effect of the adsorbent (calcined and uncalcined mixed clay) dosage for CV dye adsorption is shown in

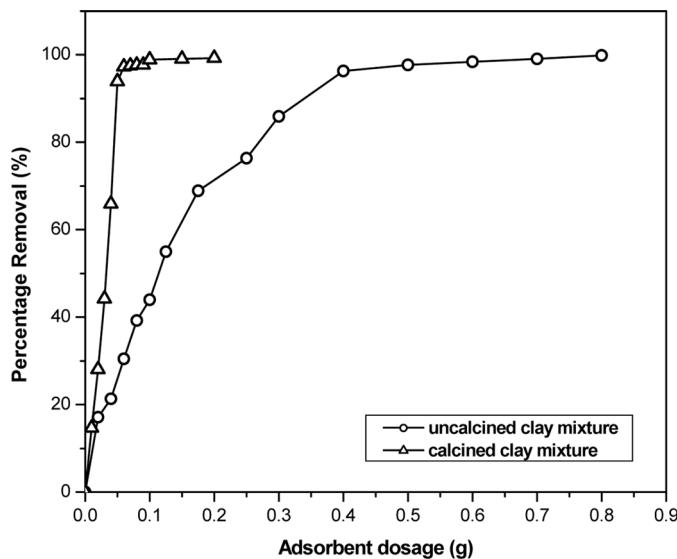



FIG. 6. Dosage effect of calcined and uncalcined mixed clays for crystal violet dye adsorption.

Fig. 6. The percentage of dye removal increases with increase in the mass of the adsorbent dosage which is due to the increase in the number of active sites for CV dye adsorption and a complete removal of dye solution is observed at a particular mass of both the adsorbent. For uncalcined mixed clay, only 25% of CV is removed by 0.05 g mass of the adsorbent and 0.8 g is required for complete removal. In the case of calcined mixed clay, 94% removal of CV requires 0.05 g of the adsorbent and only 0.2 g is needed for the complete removal of CV dye. The amount of dye adsorbed per unit mass of the adsorbent is decreased from  $1.05 \times 10^{-4}$  to  $1.53 \times 10^{-5}$  mol g<sup>-1</sup> for the uncalcined mixed clay of 0.02 to 0.8 g. However, for calcined mixed clay, the amount of dye adsorbed per unit mass of the adsorbent is increased from  $1.80 \times 10^{-4}$  to  $2.30 \times 10^{-4}$  mol g<sup>-1</sup> for the adsorbent mass of 0.01 to 0.05 g and then it decreases to  $6.08 \times 10^{-5}$  mol g<sup>-1</sup> for 0.2 g of adsorbent mass.

### Effect of pH

The pH of the dye solution is an important controlling parameter in adsorption because it affects the surface charge of the adsorbent, the degree of ionization of the materials present in the solution, the structural stability, and the color intensity of the dye molecule. The hydrogen and hydroxyl ions are adsorbed quite strongly and therefore, the adsorption of other ions is affected by the pH of the solution. The influence of pH on the dye adsorption on calcined and uncalcined mixed clays was studied for 50 ml of dye solution of initial concentration of  $2.45 \times 10^{-4}$  M by adding 0.05 g of adsorbent (calcined and uncalcined mixed clay). The percentage removal of

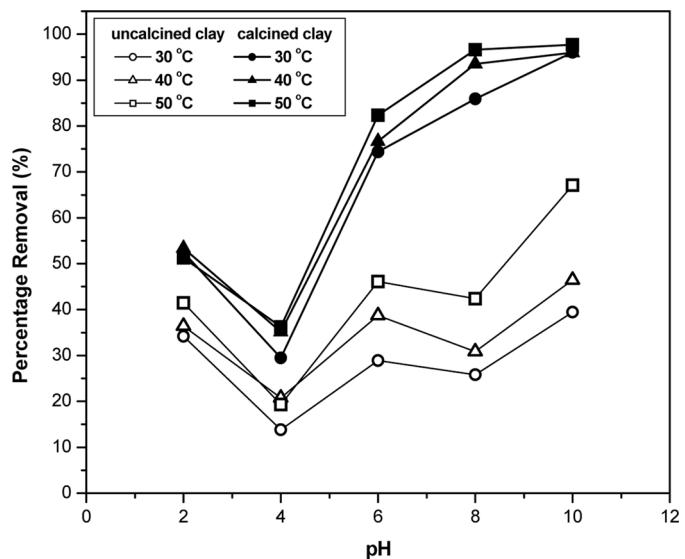



FIG. 7. Influence of pH on adsorption of CV on calcined and uncalcined mixed clays at different temperatures.

CV over the pH ranges of 2 to 10 is shown in Fig. 7. The percentage removal of CV on calcined mixed clays increases with increasing the pH from 4 to 10 and a maximum removal of 98% is obtained at pH 10. As the pH increases, the number of negative sites on the surface of the clay particles also increases. Therefore, an increase in the adsorption of the CV dye on the clays is observed at higher pH due to the presence of excess hydroxyl group. It is also explained by other ways that the increase in the pH of the solution decreases the charge density, which increases the electrostatic attraction between the positively charged dye and the negatively charged adsorbent surface results in an increase in the extent of the adsorption of CV. The minimum removal of CV is found at pH 4 that is probably due to the presence of excess H<sup>+</sup> ions competing with the cation groups on the dye for adsorption sites. The higher rate of CV removal at pH 2 is due to the dissociation of the dye molecules. The pH trend for the uncalcined mixed clay follows the same trend as like calcined mixed clay; however, the maximum percentage removal of color is lower (68%) than the calcined mixed clay at pH 10 for the same initial concentration. However, there is a decrease in the percentage color removal at pH 8. Eren and Afsin (20) have also reported similar observations for the adsorption of CV. Based on the result, it is clear that the adsorption process is highly dependent on the pH of the solution.

### Kinetic Study

The kinetic study of the adsorption process provides useful information regarding the efficiency of adsorption and feasibility of scale-up operations. It also provides the

TABLE 5

Parameters of kinetic models of CV adsorption on calcined and uncalcined mixed clay at different temperatures

| Adsorbent                | Temperature<br>(°C) | q <sub>e,exp</sub><br>(mol g <sup>-1</sup> ) | Pseudo first order model               |                                              |                | Pseudo second order model                                  |                                          |                |
|--------------------------|---------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|----------------|------------------------------------------------------------|------------------------------------------|----------------|
|                          |                     |                                              | k <sub>1</sub><br>(min <sup>-1</sup> ) | q <sub>e,cal</sub><br>(mol g <sup>-1</sup> ) | R <sup>2</sup> | k <sub>2</sub><br>(g mol <sup>-1</sup> min <sup>-1</sup> ) | q <sub>e</sub><br>(mol g <sup>-1</sup> ) | R <sup>2</sup> |
| Calcined<br>mixed clay   | 30                  | 2.30 × 10 <sup>-4</sup>                      | 0.265                                  | 2.24 × 10 <sup>-4</sup>                      | 0.996          | 4.40 × 10 <sup>3</sup>                                     | 2.30 × 10 <sup>-4</sup>                  | 0.999          |
|                          | 40                  | 2.35 × 10 <sup>-4</sup>                      | 0.267                                  | 2.27 × 10 <sup>-4</sup>                      | 0.994          | 4.44 × 10 <sup>3</sup>                                     | 2.36 × 10 <sup>-4</sup>                  | 0.999          |
|                          | 50                  | 2.36 × 10 <sup>-4</sup>                      | 0.291                                  | 2.28 × 10 <sup>-4</sup>                      | 0.994          | 5.62 × 10 <sup>3</sup>                                     | 2.36 × 10 <sup>-4</sup>                  | 0.999          |
| Uncalcined<br>mixed clay | 30                  | 7.36 × 10 <sup>-5</sup>                      | 0.138                                  | 6.00 × 10 <sup>-5</sup>                      | 0.946          | 2.32 × 10 <sup>3</sup>                                     | 6.59 × 10 <sup>-5</sup>                  | 0.999          |
|                          | 40                  | 8.31 × 10 <sup>-5</sup>                      | 0.076                                  | 7.87 × 10 <sup>-5</sup>                      | 0.929          | 1.60 × 10 <sup>3</sup>                                     | 8.46 × 10 <sup>-5</sup>                  | 0.999          |
|                          | 50                  | 8.98 × 10 <sup>-5</sup>                      | 0.068                                  | 8.28 × 10 <sup>-5</sup>                      | 0.912          | 1.21 × 10 <sup>3</sup>                                     | 9.03 × 10 <sup>-5</sup>                  | 0.999          |

information about the factors affecting the reaction rate and explains how fast or slow the chemical reaction occurs which should be very useful in the selection of the adsorbent material. Numerous kinetic models have described the reaction order of adsorption systems based on the solution concentration and the capacity of the adsorbent. In this work, the kinetic data of CV adsorption on calcined and uncalcined mixed clays is evaluated using the most widely used pseudo-first-order kinetic model (41) and pseudo-second-order kinetic model (42), which is expressed by the following equations;

$$q_t = q_e (1 - e^{-k_1 t}) \quad (9)$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t \quad (10)$$

where, k<sub>1</sub> is the pseudo-first-order rate constant (min<sup>-1</sup>), k<sub>2</sub> is the equilibrium rate constant of pseudo-second-order adsorption mechanism (g mol<sup>-1</sup> min<sup>-1</sup>), q<sub>e</sub> and q<sub>t</sub> are the amount of dye adsorbed at equilibrium (mol g<sup>-1</sup>) and at time t (mol g<sup>-1</sup>), respectively.

The adsorption kinetics of CV on calcined and uncalcined mixed clay is fitted with both the kinetic models (Figure not shown here) and the results are presented in Table 5. It is observed from Table 5 that the calculated values of q<sub>e</sub> from the pseudo-second order model shows good agreement with the experimental q<sub>e</sub> values for the temperatures studied. In addition, the regression coefficient of second-order kinetics is greater than the first-order kinetics for the adsorption of CV dye on both the mixed clays. It suggests that the adsorption follows a second-order rate equation.

## CONCLUSIONS

In this work, we have successfully demonstrated the applicability of locally available and cheaper mixed clays (calcined and uncalcined) as a potential adsorbent for the

removal of crystal violet from aqueous solution. The TGA and XRD analysis reveals that the mixed clay undergoes various reactions/phase transformations during calcination resulting in a weight loss of 64%. The sharp peak of XRD indicates that both the calcined and uncalcined mixed clays are crystalline and the formation of new phases like mullite increases the interbasal spacing which favors adsorption. It is observed that the surface area and the pore volume of the calcined mixed clay decrease during calcination. The equilibrium isotherm study indicates that the adsorption capacity increases with an increase in the temperature for both the mixed clays. Calcined mixed clay shows an extremely high adsorption capacity of  $1.9 \times 10^{-3}$  mol g<sup>-1</sup>, which is one order greater than that of the uncalcined mixed clay. The reason for the higher adsorption capacity of the calcined clay is the increase in the interbasal spacing and hydroxyl group due to expansion of the layers of clays when it mixed with water. The Langmuir model is found to be the best fit for the adsorption of CV on both the mixed clays compared to the Freundlich model. The removal efficiency of CV increases with increasing the pH from 4 to 10 for both the adsorbent. Thermodynamic parameters indicate that CV adsorption on both the mixed clays is spontaneous and endothermic in nature. The percentage removal of CV increases with an increase in the dosage for both the adsorbents indicating the increase in the adsorption sites. The results obtained from the kinetic study confirm that the adsorption of CV follows the pseudo-second order rate equation. Based on the higher adsorption capacity of these mixed clays (calcined and uncalcined), it is concluded that these materials could be used as an alternative adsorbent to the expensive activated carbon for the removal of colors from aqueous solution.

## ACKNOWLEDGEMENT

We are thankful to the Centre for Nanotechnology and the Department of Chemistry, IIT Guwahati for helping in the XRD and FTIR analysis, respectively.

## REFERENCES

- Hu, Q.; Xu, Z.; Qiao, S.; Haghseresht, F.; Wilson, M.; Lu, G.Q. (2007) A novel color removal adsorbent from heterocoagulation of cationic and anionic clays. *J. Colloid Interface Sci.*, 308 (1): 191.
- Rao, A.V.; Jain, B.L.; Gupta, I.C. (1993) Impact of textile industrial effluent on agricultural land-a case study. *Indian J. Environ. Health.*, 35 (2): 132.
- Crini, G. (2006) Non-conventional low-cost adsorbents for dye removal: A review. *Bioresour. Technol.*, 97 (9): 1061.
- Garg, V.K.; Amita, M.; Kumar, R.; Gupta, R. (2004) Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: A timber industry waste. *Dyes and Pigments*, 63 (3): 243.
- Crini, G.; Badot, P.M. (2008) Application of chitosan, a natural aminopolysaccharide for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. *Prog. Polym. Sci.*, 33 (4): 399.
- Zohra, B.; Aicha, K.; Fatima, S.; Nourredine, B.; Zoubir, D. (2008) Adsorption of direct red 2 on bentonite modified by cetyltrimethylammonium bromide. *Chem. Eng. J.*, 136 (2-3): 295.
- Namasivayam, C.; Sumithra, S. (2005) Removal of direct red 12B and methylene blue from water by adsorption onto Fe(III)/Cr(III) hydroxide, an industrial solid waste. *J. Environ. Manage.*, 74 (3): 207.
- Unuabonah, E.I.; Adebawale, K.O.; Dawodu, F.A. (2008) Equilibrium, kinetic and sorber design studies on the adsorption of aniline blue dye by sodium tetraborate-modified kaolinite clay adsorbent. *J. Hazard. Mater.*, 157 (2-3): 397.
- Al-Futaisi, A.; Jamrah, A.; Al-Hanai, R. (2007) Aspects of cationic dye molecule adsorption to palygorskite. *Desalination*, 214 (1-3): 327.
- Huang, J.; Liu, Y.; Jin, Q.; Wang, X.; Yang, J. (2007) Adsorption studies of a water soluble dye, reactive red MF-3B using sonication-surfactant-modified attapulgite clay. *J. Hazard. Mater.*, 143 (1-2): 541.
- Baskaralingam, P.; Pulikesi, M.; Ramamurthi, V.; Sivanesan, S. (2006) Equilibrium studies for the adsorption of acid dye onto modified hectorite. *J. Hazard. Mater.*, 136 (3): 989.
- Murray, H.H. (2000) Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. *Appl. Clay Sci.*, 17 (5-6): 207.
- Liu, P.; Zhang, L. (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. *Sep. Purif. Technol.*, 58 (1): 32.
- Somasundaran, P.; Hubbard, A.T. (2006) *Encyclopedia of Colloid and Surface Science*, 2nd Ed.; CRC Press Inc: New York.
- Lisi, R.D.; Lazzara, G.; Milioti, S.; Muratore, N. (2007) Adsorption of a dye on clay and sand. Use of cyclodextrins as solubility-enhancement agents. *Chemosphere*, 69 (11): 1703.
- Boubarka, Z.; Kacha, S.; Kameche, M.; Elmaleh, S.; Derrichea, Z. (2005) Sorption study of an acid dye from an aqueous solution using modified clays. *J. Hazard. Mater.*, 119 (1-3): 117.
- Gucek, A.; Sener, S.; Bilgen, S.; Mazmanci, M.A. (2005) Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. *J. Colloid Interface Sci.*, 286 (1): 53.
- Akbal, F. (2005) Adsorption of basic dyes from aqueous solution onto pumice powder. *J. Colloid Interface Sci.*, 286 (2): 455.
- Eren, E.; Afsin, B. (2007) Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. *Dyes and Pigments*, 73 (2): 162.
- Eren, E.; Afsin, B. (2008) Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces. *Dyes and Pigments*, 76 (1): 220.
- Rytwo, G.; Nir, S.; Margulies, L. (1995) Interactions of monovalent organic cations with montmorillonite: Adsorption studies and model calculations. *Soil Sci. Soc. Am. J.*, 59: 554.
- Khrasheh, M.A.M.; Al-Ghouti, M.A.; Allen, S.J.; Ahmad, M.N. (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. *Water Research*, 39 (5): 922.
- Lin, J.X.; Zhan, S.L.; Fang, M.H.; Qian, X.Q. (2007) The adsorption of dyes from aqueous solution using diatomite. *J. Porous Mater.*, 14 (4): 449.
- Ozacar, M.; Sengil, I.A. (2003) Adsorption of reactive dyes on calcined alunite from aqueous solutions. *J. Hazard. Mater.*, 98 (1-3): 211.
- Klimesch, D.S.; Ray, A. (1997) The use of DTA/TGA to study the effects of ground quartz with different surface areas in autoclaved cement: quartz pastes. Use of the semi-isothermal thermogravimetric technique. *Thermochim. Acta*, 306 (1-2): 159.
- Temuujin, J.; Okada, K.; Jadambaa, T.S.; MacKenzie, K.J.D.; Amarsanaa, J. (2003) Effect of grinding on the leaching behaviour of pyrophyllite. *J. Eur. Ceram. Soc.*, 23 (8): 1277.
- Gamiz, E.; Melgosa, M.; Maranon, M.S.; Garcia, J.M.M.; Delgado, R. (2005) Relationships between chemico-mineralogical composition and color properties in selected natural and calcined Spanish kaolins. *Appl. Clay Sci.*, 28 (1-4): 269.
- Dogan, M.; Alkan, M.; Onganer, Y. (2000) Adsorption of methylene blue from aqueous solution onto perlite. *Water, Air, and Soil Pollution*, 120 (3-4): 229.
- Mitra, G.B.; Bhattacherjee, S. (1969) X-ray diffraction studies on the transformation of kaolinite into metakaolin: I. variability of interlayer spacings. *The American Mineralogist*, 54: 1409.
- Chandrasekhar, S.; Ramaswamy, S. (2002) Influence of mineral impurities on the properties of kaolin and its thermally treated products. *Appl. Clay Sci.*, 21 (3-4): 133.
- Vasanth Kumar, K. (2006) Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. *Dyes and Pigments*, 74 (3): 595.
- Langmuir, I. (1915) Chemical reactions at low pressures. *J. Am. Chem. Soc.*, 37 (5): 1139.
- Freundlich, H.M.F. (1906) Over the adsorption in solution. *J. Phys. Chem.*, 57: 385.
- Chiou, M.S.; Li, H.Y. (2003) Adsorption behaviour of reactive dye in aqueous solution on cross-linked chitosan beads. *Chemosphere*, 50 (8): 1095.
- Nandi, B.K.; Goswami, A.; Purkait, M.K. (2009) Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. *Appl. Clay Sci.*, 42 (3-4): 583.
- Baskaralingam, P.; Pulikesi, M.; Elango, D.; Ramamurthi, V.; Sivanesan, S. (2006) Adsorption of acid dye onto organobentonite. *J. Hazard. Mater.*, 128 (2-3): 138.
- Graham, N.; Chen, X.G.; Jayaseelan, S. (2001) The potential application of activated carbon from sewage sludge to organic dyes removal. *Water Sci. Technol.*, 43(2): 245.
- Chakraborty, S.; De, S.; DasGupta, S.; Basu, J. K. (2005) Adsorption study for the removal of a basic dye: Experimental and modeling. *Chemosphere*, 58 (8): 1079.
- Bujdak, J. (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. *Appl. Clay Sci.*, 34 (1-4): 58.
- Ogawa, M. (2002) Photoisomerization of azobenzene in the interlayer space of magadiite. *J. Mater. Chem.*, 12 (11): 3304.
- Lagergren, S. (1898) About the theory of so-called adsorption of soluble substances. *K. Svenska Vetens akad. Handl.*, 24 (4): 1.
- Ho, Y.S.; McKay, G. (1999) Pseudo-second-order model for sorption processes. *Process Biochem.*, 34 (5): 451.